Krzysiaczek99
Well-known member
- Messages
- 430
- Likes
- 1
very good Local Deep Kernel learning presentation
http://research.microsoft.com/apps/video/default.aspx?id=230426
http://research.microsoft.com/apps/video/default.aspx?id=230426
Krzysiaczek99
So the CHIRP classifier is the best or ? but the input/output are primordial for a good prediction.
An insufficiently wide window for immersing into the lag space cannot provide such information, which, naturally, decreases the efficiency of forecasting. On the other hand, expanding the window to such values that cover the distant, extreme values of the time-series will increase the network dimensions. This, in its turn, will result in the decreased accuracy of neural network predictions - now due to the network growth.
Nice Krzysztof.Here are the results of the system for April and May - in total 39k of trades on 8 instruments. I made some trade analysis using quantanalyzer and build some portfolios also.
http://www.mediafire.com/download/trxe2j7xjiq5qye/statements.zip
Krzysztof
Nice Krzysztof.
For April and May, it's a walkforward test ? and June / July still good ?
Average 2500 trades by months / by instruments it's very very lot of trades !! the system run on 1 mins bars ?
>> resultsAll('*info=OS')
resultsAll('*Peg*info=OS')
%resultsAll('*LMT*info=OS')
resultsAll('*CHIRP*info=OS')
resultsAll('*J48*info=OS')
resultsAll('*RBM*info=OS')
resultsAll('*SDAE*info=OS')
resultsAll('*ELM*info=OS')
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-8201988.60 0.28 -0.13 40.48 0.30 48088 67319 18 48 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-1425720.10 0.46 -0.07 45.27 0.67 17110 20442 3 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-230347.50 0.72 0.02 49.34 0.42 11234 10835 4 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-1428701.90 0.29 -0.31 37.84 0.34 9935 15637 3 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-1401488.00 0.25 -0.19 32.07 0.05 1704 4577 3 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-664451.40 0.04 -0.04 43.87 0.08 1945 3097 3 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-3051279.70 0.12 -0.15 34.88 0.25 6160 12731 2 8 1 5
>> resultsAll('*info=OS')
resultsAll('*Peg*info=OS')
%resultsAll('*LMT*info=OS')
resultsAll('*CHIRP*info=OS')
resultsAll('*J48*info=OS')
resultsAll('*RBM*info=OS')
resultsAll('*SDAE*info=OS')
resultsAll('*ELM*info=OS')
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-1009737.10 0.88 -0.25 42.50 0.30 56823 70550 18 48 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
3846525.40 9.13 -0.18 51.49 0.51 17019 14046 5 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-833498.20 0.16 -0.29 36.76 0.21 6640 10995 4 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-1428701.90 0.29 -0.31 37.84 0.34 9935 15637 3 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
157205.60 1.13 -0.11 49.69 0.33 9886 10516 4 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-1739003.00 0.16 -0.37 27.87 0.10 2577 6568 0 8 1 5
NORMAL DATA AVERAGE RESULTS
Profit PF avMC avPP avRC totTP totFP PF>1 algosnum SS SSl
-1012265.00 0.53 -0.28 43.12 0.32 10766 12788 2 8 1 5
>>