Krzysiaczek99
Well-known member
- Messages
 - 430
 
- Likes
 - 1
 
John Ehler's supersmoother
I think I did this test some time ago but now is a new era of my system so why not to repeat this test, simple to filter the price data using John Ehler's super smoother.
According to him the aliasing noise and spectral dilation should go away so it should be much easier to predict from this data than from raw data. This what theory says.
here is a link to his presentation
	
		
	
and here are the results
before smoothing
	
	
	
		
and after smoothing
	
	
	
		
so clearly it degrades the performance. PF down from 1.1 to 0.94. As result is based on 3.2 mln trades i think is quite significant.
Krzysztof
				
			I think I did this test some time ago but now is a new era of my system so why not to repeat this test, simple to filter the price data using John Ehler's super smoother.
According to him the aliasing noise and spectral dilation should go away so it should be much easier to predict from this data than from raw data. This what theory says.
here is a link to his presentation
and here are the results
before smoothing
		Code:
	
	>> resultsAll('')
resultsAll('*Peg*')
resultsAll('*CHIRP*')
resultsAll('*J48*')
resultsAll('*RBM*')
resultsAll('*SDAE*')
resultsAll('*ELM*')
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
153524895.60         1.10        -0.31        63.57         0.33      2057179      1142804          685         1146        47.98
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
 18313270.30         1.06        -0.35        62.34         0.37       396627       231428          115          191        29.16
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
 99547243.10         1.51        -0.17        67.07         0.34       347466       161197          128          191       195.70
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
 28772075.10         1.10        -0.33        62.44         0.36       381382       203698          111          191        49.18
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
-44923482.80         0.81        -0.37        60.81         0.23       245033       165306          105          191      -109.48
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
 43758625.80         1.19        -0.34        66.31         0.31       326497       167161          112          191        88.64
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
  8057164.10         1.03        -0.31        62.31         0.35       360174       214014          114          191        14.03
>>
	and after smoothing
		Code:
	
	>> resultsAll('')
resultsAll('*Peg*')
resultsAll('*CHIRP*')
resultsAll('*J48*')
resultsAll('*RBM*')
resultsAll('*SDAE*')
resultsAll('*ELM*')
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
-101993241.90         0.94        -0.34        60.33         0.32      1963830      1207497          627         1146       -32.16
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
-80552728.10         0.80        -0.37        60.33         0.39       399735       266821          112          191      -120.85
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
  4939925.40         1.02        -0.23        61.31         0.35       355152       204655          117          191         8.82
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
 16094468.20         1.05        -0.34        61.36         0.36       376003       212934          113          191        27.33
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
-41257476.50         0.76        -0.45        51.70         0.14       143284       118435           63          191      -157.64
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
-12799560.40         0.95        -0.41        61.73         0.30       321478       188821          109          191       -25.08
   NORMAL DATA AVERAGE RESULTS
      Profit           PF         avMC         avPP         avRC        totTP        totFP         PF>1     algosnum     perTrade
 11582129.50         1.04        -0.30        62.14         0.36       368178       215831          113          191        19.83
>>
	so clearly it degrades the performance. PF down from 1.1 to 0.94. As result is based on 3.2 mln trades i think is quite significant.
Krzysztof